J.C.S. CHEM. COMM., 1972 1281

1,11-Dipolar Cycloaddition

By C. W. Rees,* R. W. Stephenson, and R. C. Storr (The Robert Robinson Laboratories, University of Liverpool, P.O. Box 147, Liverpool L69 3BX)

Summary 2-Methylnaphtho[1,8-de]triazine 1,11-dipolar $(12\pi + 2\pi)$ cycloaddition to acetylenic esters to give 2-methylacenaphtho[5,6-de]triazines, after spontaneous dehydrogenation.

2-METHYLNAPHTHO[1,8-de]TRIAZINE $(1)^1$ is of interest since it incorporates the dipolar azimine function2 for which the first 1,3-dipolar cycloaddition reactions have only recently been observed.3

Gradual addition of dimethyl acetylenedicarboxylate (2 equiv.) to the blue naphthotriazine (1) in refluxing odichlorobenzene over 3 h gave the red acenaphtho[5,6-de]triazine (3) (30-40%), m.p. 233°. The ¹H n.m.r. spectrum of (3) $\lceil \tau(\text{CDCl}_3) \ 1.05$ and $\bar{2}.19$ (4H, ABq, $J \ 8.5$ Hz), 5.08 (s, N-Me), and 5.88 (2 identical Me)] and its u.v. spectrum in ethanol [λ_{\max} 247 (ϵ 18,500), 276 (13,200), 340sh (38,500), 352 (51,400), and 504 nm (6230)] are closely analogous to those reported for 2-methylacenaphtho [5,6-de] triazine.4

Formation of (3) is rationalised by a thermally allowed 1,11-dipolar cycloaddition to give (2), followed by dehydrogenation to give the stable 14π aromatic system. In accord with this, the reaction was cleaner and the best yield was obtained in the presence of 3 equiv. of sulphur as dehydrogenating agent.

Analogous cycloadditions were observed with diethyl acetylenedicarboxylate and methyl propiolate, but initial indications are that reactions with olefinic dipolarophiles are more complex. 2-(2,4-Dinitrophenyl)naphtho[1,8-de]triazine reacts in a similar manner to the 2-methyl compound.

These reactions provide the first examples of $12\pi + 2\pi$ cycloaddition and, together with the recently reported 1,5-dipolar cycloaddition reactions, 5 strikingly illustrate the potential extension of 1,3-dipolar cycloaddition to vinylogous dipolar systems of more than 4π electrons.

(Received, 17th October 1972; Com. 1778.)

M. J. Perkins, J. Chem. Soc., 1964, 3005.
 R. C. Kerber, J. Org. Chem., 1972, 37, 1587.
 S. F. Gait, M. J. Rance, C. W. Rees, and R. C. Storr, J.C.S. Chem. Comm., 1972, 688.

⁴ P. Flowerday, M. J. Perkins, and A. R. J. Arthur, J. Chem. Soc., (C), 1970, 290.
⁵ S. F. Gait, M. J. Rance, C. W. Rees, and R. C. Storr, J.C.S. Chem. Comm., 1972, 806; O. S. Rothenberger, R. T. Taylor, D. L. Dalrymple, and J. A. Moore, J. Org. Chem., 1972, 37, 2640.